Detailed Analysis: Testing the SCC Equations with Specific Systems

In this section, we will perform calculations for specific physical systems using the mathematical framework developed for the Space-Change Continuum (SCC). Our goal is to:

  1. Apply the SCC Equations: Use the reformulated equations to describe physical systems.
  2. Solve the Equations: Find solutions to these equations.
  3. Compare with Standard Physics: Evaluate whether the results are consistent with known physics.

We will analyze the following systems:

  • Classical Mechanics:
    • A free particle.
    • A harmonic oscillator.
  • Quantum Mechanics:
    • A free particle.
    • A particle in a potential well.
  • Electromagnetism:
    • Electromagnetic wave propagation.

1. Classical Mechanics in the SCC

1.1 Free Particle

Problem Statement:

Consider a particle of mass mm moving freely in space.

SCC Lagrangian:

The Lagrangian LL for a free particle is:

L=12mgijdxidχdxjdχL = \frac{1}{2} m g_{ij} \frac{dx^i}{d\chi} \frac{dx^j}{d\chi}

Assuming flat space, gij=δijg_{ij} = \delta_{ij}, the Kronecker delta.

Euler-Lagrange Equations:

ddχ(L(dxidχ))Lxi=0\frac{d}{d\chi} \left( \frac{\partial L}{\partial \left( \frac{dx^i}{d\chi} \right)} \right) - \frac{\partial L}{\partial x^i} = 0

Since LL does not depend explicitly on xix^i:

ddχ(mdxidχ)=0\frac{d}{d\chi} \left( m \frac{dx^i}{d\chi} \right) = 0

Solution:

Integrate once:

mdxidχ=pi=constantm \frac{dx^i}{d\chi} = p^i = \text{constant}

Integrate again:

xi(χ)=viχ+x0ix^i(\chi) = v^i \chi + x^i_0

where:

  • vi=pimv^i = \frac{p^i}{m} is the velocity with respect to χ\chi.
  • x0ix^i_0 is the initial position.

Interpretation:

  • The particle moves at a constant "velocity" viv^i with respect to the change parameter χ\chi.
  • This is analogous to uniform motion in standard mechanics.

1.2 Harmonic Oscillator

Problem Statement:

A particle of mass mm attached to a spring with spring constant kk.

SCC Lagrangian:

L=12m(dxdχ)212kx2L = \frac{1}{2} m \left( \frac{dx}{d\chi} \right)^2 - \frac{1}{2} k x^2

Euler-Lagrange Equation:

ddχ(mdxdχ)+kx=0\frac{d}{d\chi} \left( m \frac{dx}{d\chi} \right) + k x = 0

Simplify:

md2xdχ2+kx=0m \frac{d^2 x}{d\chi^2} + k x = 0

Equation of Motion:

d2xdχ2+ω2x=0\frac{d^2 x}{d\chi^2} + \omega^2 x = 0

where ω2=km\omega^2 = \frac{k}{m}.

Solution:

The general solution is:

x(χ)=Acos(ωχ)+Bsin(ωχ)x(\chi) = A \cos(\omega \chi) + B \sin(\omega \chi)

where AA and BB are constants determined by initial conditions.

Interpretation:

  • The particle undergoes oscillations with respect to χ\chi, similar to time in standard mechanics.
  • The frequency of oscillation depends on ω\omega, as usual.

Comparison with Standard Mechanics:

  • The form of the equation and solution is identical to that in standard mechanics with tt replaced by χ\chi.
  • If we can relate χ\chi to tt via χ=αt\chi = \alpha t (with α\alpha being a constant scaling factor), we recover the standard results.

2. Quantum Mechanics in the SCC

2.1 Free Particle

Problem Statement:

A free particle of mass mm in one dimension.

SCC Schrödinger Equation:

iΨχ=22m2Ψx2i \hbar \frac{\partial \Psi}{\partial \chi} = -\frac{\hbar^2}{2m} \frac{\partial^2 \Psi}{\partial x^2}

Solution:

Assume a plane wave solution:

Ψ(x,χ)=ei(kxωχ)\Psi(x, \chi) = e^{i(k x - \omega \chi)}

Substitute into the Schrödinger equation:

i(iω)ei(kxωχ)=22m(k2)ei(kxωχ)i \hbar (-i \omega) e^{i(k x - \omega \chi)} = -\frac{\hbar^2}{2m} (-k^2) e^{i(k x - \omega \chi)}

Simplify:

ω=2k22m\hbar \omega = \frac{\hbar^2 k^2}{2m}

Dispersion Relation:

ω=k22m\omega = \frac{\hbar k^2}{2m}

Interpretation:

  • The energy associated with change parameter χ\chi is E=ωE = \hbar \omega.
  • This is consistent with the standard energy-momentum relation for a free particle.

2.2 Particle in a Potential Well

Problem Statement:

A particle in an infinite potential well of width LL between x=0x = 0 and x=Lx = L.

SCC Schrödinger Equation Inside the Well:

iΨχ=22m2Ψx2i \hbar \frac{\partial \Psi}{\partial \chi} = -\frac{\hbar^2}{2m} \frac{\partial^2 \Psi}{\partial x^2}

Boundary Conditions:

Ψ(0,χ)=Ψ(L,χ)=0\Psi(0, \chi) = \Psi(L, \chi) = 0

Separation of Variables:

Assume Ψ(x,χ)=ψ(x)eiEnχ/\Psi(x, \chi) = \psi(x) e^{-i E_n \chi / \hbar}

Substitute into the equation:

Enψ(x)=22md2ψdx2E_n \psi(x) = -\frac{\hbar^2}{2m} \frac{d^2 \psi}{dx^2}

Solution:

ψn(x)=2Lsin(nπxL),n=1,2,3,...\psi_n(x) = \sqrt{\frac{2}{L}} \sin\left( \frac{n \pi x}{L} \right), \quad n = 1,2,3,...

Energy Levels:

En=2π2n22mL2E_n = \frac{\hbar^2 \pi^2 n^2}{2m L^2}

Interpretation:

  • The energy levels are quantized and identical to those in standard quantum mechanics.
  • The time dependence is replaced by dependence on χ\chi.

3. Electromagnetism in the SCC

3.1 Electromagnetic Wave Propagation

Problem Statement:

Propagation of an electromagnetic wave in a vacuum.

Maxwell's Equations in SCC:

  1. Faraday's Law:

    ×E=Bχ\nabla \times \mathbf{E} = - \frac{\partial \mathbf{B}}{\partial \chi}
  2. Ampère's Law (no currents):

    ×B=μ0ϵ0Eχ\nabla \times \mathbf{B} = \mu_0 \epsilon_0 \frac{\partial \mathbf{E}}{\partial \chi}
  3. Gauss's Laws:

    E=0,B=0\nabla \cdot \mathbf{E} = 0, \quad \nabla \cdot \mathbf{B} = 0

Wave Equations:

Taking the curl of Faraday's Law and substituting from Ampère's Law:

×(×E)=χ(×B)=μ0ϵ02Eχ2\nabla \times (\nabla \times \mathbf{E}) = - \frac{\partial}{\partial \chi} (\nabla \times \mathbf{B}) = - \mu_0 \epsilon_0 \frac{\partial^2 \mathbf{E}}{\partial \chi^2}

Using vector identity:

(E)2E=μ0ϵ02Eχ2\nabla (\nabla \cdot \mathbf{E}) - \nabla^2 \mathbf{E} = - \mu_0 \epsilon_0 \frac{\partial^2 \mathbf{E}}{\partial \chi^2}

Since E=0\nabla \cdot \mathbf{E} = 0:

2E=μ0ϵ02Eχ2\nabla^2 \mathbf{E} = \mu_0 \epsilon_0 \frac{\partial^2 \mathbf{E}}{\partial \chi^2}

Similarly for B\mathbf{B}:

2B=μ0ϵ02Bχ2\nabla^2 \mathbf{B} = \mu_0 \epsilon_0 \frac{\partial^2 \mathbf{B}}{\partial \chi^2}

Solution:

Assume plane wave solutions:

E(r,χ)=E0ei(krωχ)\mathbf{E}(\mathbf{r}, \chi) = \mathbf{E}_0 e^{i(\mathbf{k} \cdot \mathbf{r} - \omega \chi)} B(r,χ)=B0ei(krωχ)\mathbf{B}(\mathbf{r}, \chi) = \mathbf{B}_0 e^{i(\mathbf{k} \cdot \mathbf{r} - \omega \chi)}

Substitute into the wave equation:

k2E=μ0ϵ0(ω2)E- k^2 \mathbf{E} = \mu_0 \epsilon_0 (-\omega^2) \mathbf{E}

Simplify:

k2=μ0ϵ0ω2k^2 = \mu_0 \epsilon_0 \omega^2

Dispersion Relation:

ω=kμ0ϵ0=kc\omega = \frac{k}{\sqrt{\mu_0 \epsilon_0}} = k c

where c=1μ0ϵ0c = \frac{1}{\sqrt{\mu_0 \epsilon_0}}

where c=1μ0ϵ0c = \frac{1}{\sqrt{\mu_0 \epsilon_0}}

Comments

Popular posts from this blog